organic compounds

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

Redetermination of pyridine-4carbonitrile-chloranilic acid (1/1) at 180 K

Kazuma Gotoh, Hirokazu Nagoshi and Hiroyuki Ishida*

Department of Chemistry, Faculty of Science, Okayama University, Okayama 700-8530, Japan

Correspondence e-mail: ishidah@cc.okayama-u.ac.jp

Received 5 June 2008; accepted 7 June 2008

Key indicators: single-crystal X-ray study; T = 180 K; mean σ (C–C) = 0.004 Å; R factor = 0.058; wR factor = 0.177; data-to-parameter ratio = 18.6.

In the crystal structure of the title compound, C₆H₄N₂.-C₆H₂Cl₂O₄, two chloranilic acid (systematic name: 2,5dichloro-3,6-dihydroxy-1,4-benzoquinone) molecules are connected by $O-H \cdots O$ hydrogen bonds to form a dimeric unit. The pyridine-4-carbonitrile molecules are linked on both sides of the dimer via $N \cdots H \cdots O$ hydrogen bonds to give a centrosymmetric 2:2 complex of pyridine-4-carbonitrile and chloranilic acid. The H atom in the N···H···O hydrogen bond is disordered over two positions with approximately equal occupancies. The pyridine ring makes a dihedral angle of $61.54 (14)^{\circ}$ with the chloranilic acid plane. The 2:2 units are further linked by intermolecular $C-H\cdots O$ and $C-H\cdots Cl$ hydrogen bonds. This determination presents a siginficantly higher precision crystal structure than the previously published structure [Tomura & Yamasshita (2008). X-ray Struct. Anal. Online, 24, x31-x32].

Related literature

For related structures, see, for example: Gotoh, Asaji & Ishida (2007); Gotoh, Ishikawa & Ishida (2007); Tomura & Yamas-shita (2008).

 $M_r = 313.10$

Experimental

Crystal data C₆H₄N₂·C₆H₂Cl₂O₄ Monoclinic, $P2_1/n$ a = 14.9327 (8) Å b = 4.9301 (3) Å c = 17.0355 (10) Å $\beta = 93.0474$ (18)° V = 1252.37 (13) Å³

Data collection

Rigaku R-AXIS RAPIDII	11539 measured reflections
diffractometer	3567 independent reflections
Absorption correction: numerical	2165 reflections with $I > 2\sigma(I)$
(ABSCOR; Higashi, 1995)	$R_{\rm int} = 0.076$
$T_{\min} = 0.900, \ T_{\max} = 0.958$	

Z = 4

Mo $K\alpha$ radiation

 $\mu = 0.53 \text{ mm}^-$

T = 180 (2) K $0.18 \times 0.18 \times 0.08 \text{ mm}$

Refinement

$R[F^2 > 2\sigma(F^2)] = 0.058$	H atoms treated by a mixture of
$wR(F^2) = 0.176$	independent and constrained
S = 1.07	refinement
3567 reflections	$\Delta \rho_{\rm max} = 0.43 \ {\rm e} \ {\rm \AA}^{-3}$
192 parameters	$\Delta \rho_{\rm min} = -0.73 \ {\rm e} \ {\rm \AA}^{-3}$

Table 1Hydrogen-bond geometry (Å, °).

$D - H \cdots A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdot \cdot \cdot A$
O2−H2···N1	1.20 (10)	1.47 (10)	2.610 (3)	158 (7)
O4−H4···O1	0.78 (4)	2.21 (4)	2.661 (3)	118 (4)
$O4-H4\cdots O1^{i}$	0.78 (4)	1.99 (4)	2.656 (3)	144 (4)
$N1 - H1 \cdots O2$	0.83 (12)	1.80 (13)	2.610 (3)	163 (10)
$N1 - H1 \cdots O3$	0.83 (12)	2.45 (10)	2.957 (3)	120 (9)
$C7 - H7 \cdot \cdot \cdot Cl1^{ii}$	0.95	2.82	3.722 (3)	159
C8−H8···O4 ⁱⁱⁱ	0.95	2.46	3.324 (4)	151
C10−H10···Cl2 ^{iv}	0.95	2.81	3.710 (3)	158
$C11-H11\cdots O3^{v}$	0.95	2.39	3.245 (4)	150

Symmetry codes: (i) -x + 1, -y + 2, -z + 1; (ii) $-x + \frac{3}{2}, y - \frac{1}{2}, -z + \frac{3}{2}$; (iii) $x + \frac{1}{2}, -y + \frac{1}{2}, z + \frac{1}{2}$; (iv) -x + 2, -y, -z + 1; (v) -x + 2, -y + 1, -z + 1.

Data collection: *PROCESS-AUTO* (Rigaku/MSC, 2004); cell refinement: *PROCESS-AUTO*; data reduction: *CrystalStructure* (Rigaku/MSC, 2004); program(s) used to solve structure: *SHELXS97* (Sheldrick, 2008); program(s) used to refine structure: *SHELXL97* (Sheldrick, 2008); molecular graphics: *ORTEP-3* (Farrugia, 1997); software used to prepare material for publication: *CrystalStructure* and *PLATON* (Spek, 2003).

This work was supported by a Grant-in-Aid for Scientific Research (C) (No. 19550018) from the Japanese Society for the Promotion of Science.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: LH2639).

References

Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.
Gotoh, K., Asaji, T. & Ishida, H. (2007). Acta Cryst. C63, o17–o20.
Gotoh, K., Ishikawa, R. & Ishida, H. (2007). Acta Cryst. E63, o4433.
Higashi, T. (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan.
Rigaku/MSC. (2004). PROCESS-AUTO and CrystalStructure. Rigaku/MSC Inc., The Woodlands, Texas, USA.
Sheldrick, G. M. (2008). Acta Cryst. 36, 7–13.
Tomura, M. & Yamasshita, Y. (2008). X-ray Struct. Anal. Online, 24, x31–x32

supplementary materials

Acta Cryst. (2008). E64, o1260 [doi:10.1107/S1600536808017182]

Redetermination of pyridine-4-carbonitrile-chloranilic acid (1/1) at 180 K

K. Gotoh, H. Nagoshi and H. Ishida

Comment

The title compound, (I), was prepared in order to extend our study on D—H···A hydrogen bonding (D = N, O, or C; A = N, O or Cl) in amine–chloranilic acid systems (Gotoh, Asaji & Ishida, 2007; Gotoh, Ishikawa & Ishida, 2007). This determination presents a significantly higher precision crystal structure than the previously published structure (Tomura & Yamasshita, 2008).

The asymmetric unit in (I) contains one pyridine-4-carbonitrile molecule and one chloranilic acid molecule (Fig. 1). Two chloranilic acid molecules related by an inversion centre are held together by O—H…O hydrogen bonds (Table 1) to form a dimer. The pyridine-4-carbonitrile molecules are linked on both sides of the dimer *via* N…H…O hydrogen bonds to give a centrosymmetric 2:2 complex of pyridine-4-carbonitrile and chloranilic acid (Fig. 2). The N…O distance is relatively short [2.610 (3) Å] and the H atom in the N…H…O hydrogen bond is disordered over two positions with site occupancies of 0.54 (17) and 0.46 (17). In the 2:2 unit, the pyridine and chloranilic acid planes are twised with a dihedral angle of 61.54 (14)°. The 2:2 units are further linked by C—H…O and C—H…Cl hydrogen bonds (Table 1 and Fig. 3).

Experimental

Single crystals were obtained by slow evaporation from a methanol solution (30 ml) of chloranilic acid (500 mg) and pyridine-4-carbonitrile (250 mg).

Refinement

C-bound H atoms were positioned geometrically (C—H = 0.95 Å) and refined as riding, with $U_{iso}(H) = 1.2U_{eq}(C)$. The H atom in the O—H···O hydrogen bond was found in a difference Fourier map and refined isotropically (refined distances given in Table 1). The H atom in the N···H···O hydrogen bond was found to be disordered over two positions in a difference Fourier map. The positional parameters of the disordered H atom were refined, with $U_{iso}(H) = 1.2U_{eq}(N, O)$ and the site occupancy factors were refined to 0.54 (17) and 0.46 (17).

Figures

Fig. 1. The molecular structure of (I), with the atom-labeling. Displacement ellipsoids of non-H atoms are drawn at the 50% probability level.

Fig. 2. The structure of the 2:2 unit of (I). The dashed lines indicate O—H…O hydrogen bonds (symmetry codes as Table 1).

Fig. 3. A packing diagram of (I), viewed down the *b* axis. The dotted lines indicate C—H···Cl hydrogen bonds.

pyridine-4-carbonitrile-chloranilic acid (1/1)

Crystal data	
$C_6H_4N_2{\cdot}C_6H_2Cl_2O_4$	$F_{000} = 632.00$
$M_r = 313.10$	$D_{\rm x} = 1.660 {\rm ~Mg} {\rm ~m}^{-3}$
Monoclinic, $P2_1/n$	Mo K α radiation $\lambda = 0.71075 \text{ Å}$
Hall symbol: -P 2yn	Cell parameters from 7762 reflections
a = 14.9327 (8) Å	$\theta = 3.0 - 30.0^{\circ}$
b = 4.9301 (3) Å	$\mu = 0.53 \text{ mm}^{-1}$
c = 17.0355 (10) Å	T = 180 (2) K
$\beta = 93.0474 \ (18)^{\circ}$	Needle, brown
$V = 1252.37 (13) \text{ Å}^3$	$0.18\times0.18\times0.08\ mm$
Z = 4	

Data collection

Rigaku R-AXIS RAPIDII diffractometer	2165 reflections with $I > 2\sigma(I)$
Detector resolution: 10.00 pixels mm ⁻¹	$R_{\rm int} = 0.076$
ω scans	$\theta_{\text{max}} = 30.0^{\circ}$
Absorption correction: numerical (<i>ABSCOR</i> ; Higashi, 1995)	$h = -20 \rightarrow 20$
$T_{\min} = 0.900, \ T_{\max} = 0.958$	$k = -6 \rightarrow 6$
11539 measured reflections	<i>l</i> = −23→22
3567 independent reflections	

Refinement

Refinement on F^2	Hydrogen site location: inferred from neighbouring sites
$R[F^2 > 2\sigma(F^2)] = 0.058$	H atoms treated by a mixture of independent and constrained refinement
$wR(F^2) = 0.177$	$w = 1/[\sigma^2(F_o^2) + (0.0805P)^2]$ where $P = (F_o^2 + 2F_c^2)/3$
<i>S</i> = 1.07	$(\Delta/\sigma)_{\rm max} = 0.001$
3567 reflections	$\Delta \rho_{max} = 0.43 \text{ e} \text{ Å}^{-3}$
192 parameters	$\Delta \rho_{\rm min} = -0.73 \ e \ {\rm \AA}^{-3}$
Primary atom site location: structure-invariant direct methods	Extinction correction: none

Secondary atom site location: difference Fourier map

Special details

Cl1

0.0338(4)

0.0282(4)

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger.

 $U_{\rm iso}*/U_{\rm eq}$ Occ. (<1) \boldsymbol{Z} х y C11 0.0293(2)0.72657 (5) 1.21818 (15) 0.67956 (4) Cl2 0.72206 (5) 0.30951 (15) 0.41510 (4) 0.0317(2) 01 0.57647 (13) 1.0461 (5) 0.56722 (13) 0.0341 (5) O2 0.87571 (13) 0.8329(4)0.64426 (13) 0.0303(5)H2 0.914 (7) 0.62(2)0.647 (5) 0.036* 0.54 (17) O3 0.87474 (13) 0.4764(5)0.52519(13) 0.0343(5)04 0.57459 (14) 0.6729 (5) 0.45427 (14) 0.0316 (5) H4 0.540(3) 0.781 (8) 0.466 (2) 0.048 (13)* N1 0.97525 (16) 0.4095 (6) 0.67823 (15) 0.0303 (6) H10.944 (9) 0.53 (3) 0.658 (6) 0.036* 0.46(17) N2 1.18662 (18) -0.3815 (6) 0.78927 (17) 0.0370 (6) C1 0.64869 (18) 0.0256(6) 0.9233 (6) 0.56045 (16) C2 0.72824 (18) 0.9664 (6) 0.60781 (16) 0.0249 (6) C3 0.60089 (17) 0.0248 (6) 0.80477 (18) 0.8142 (6) C4 0.80495 (18) 0.5996 (6) 0.53513 (17) 0.0254 (6) C5 0.72339 (19) 0.5549 (6) 0.0266 (6) 0.48720 (16) C6 0.65029 (18) 0.7065 (6) 0.49777 (17) 0.0244 (6) C7 0.9672 (2) 0.3253 (7) 0.7517(2) 0.0354 (7) H70.9239 0.4070 0.7831 0.043* C8 1.0209 (2) 0.1210(7) 0.78260 (18) 0.0333 (7) H8 1.0152 0.0599 0.8350 0.040* C9 1.08368 (18) 0.0063 (6) 0.73566 (17) 0.0275 (6) C10 1.0914 (2) 0.0969(7) 0.65940 (19) 0.0372 (8) H10 1.1348 0.0208 0.045* 0.6271 C11 1.0349 (2) 0.2994 (7) 0.6313 (2) 0.0355 (7) H11 1.0382 0.3613 0.5787 0.043* C12 1.1423 (2) -0.2083(6)0.76598 (19) 0.0310(7) Atomic displacement parameters $(Å^2)$ U^{22} U^{33} U^{23} U^{11} U^{12} U^{13}

0.0255 (4)

-0.0001(3)

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (A^2)

-0.0035(3)

-0.0033(3)

supplementary materials

Cl2	0.0369 (4)	0.0322 (4)	0.0257 (4)	0.0089 (3)	-0.0017 (3)	-0.0053 (3)
01	0.0287 (10)	0.0399 (12)	0.0328 (12)	0.0106 (10)	-0.0062 (9)	-0.0093 (10)
02	0.0283 (10)	0.0288 (11)	0.0327 (12)	0.0020 (9)	-0.0080 (9)	0.0018 (9)
O3	0.0287 (10)	0.0407 (13)	0.0333 (12)	0.0107 (9)	-0.0004 (9)	0.0012 (10)
O4	0.0242 (10)	0.0364 (12)	0.0335 (12)	0.0074 (9)	-0.0062 (9)	-0.0105 (10)
N1	0.0276 (13)	0.0333 (14)	0.0292 (14)	0.0032 (11)	-0.0055 (10)	0.0018 (12)
N2	0.0375 (14)	0.0337 (14)	0.0398 (16)	0.0036 (12)	0.0012 (12)	0.0039 (13)
C1	0.0263 (13)	0.0280 (14)	0.0223 (14)	0.0038 (12)	0.0001 (11)	0.0014 (12)
C2	0.0272 (13)	0.0264 (14)	0.0208 (13)	0.0010 (12)	-0.0011 (10)	-0.0012 (11)
C3	0.0212 (13)	0.0289 (15)	0.0239 (14)	-0.0010 (11)	-0.0030 (10)	0.0045 (12)
C4	0.0285 (14)	0.0241 (13)	0.0237 (14)	0.0044 (11)	0.0004 (11)	0.0062 (12)
C5	0.0305 (14)	0.0282 (14)	0.0209 (14)	0.0022 (12)	-0.0004 (11)	-0.0027 (12)
C6	0.0254 (14)	0.0239 (14)	0.0233 (14)	0.0020 (11)	-0.0039 (11)	-0.0003 (11)
C7	0.0345 (16)	0.0420 (19)	0.0294 (16)	0.0084 (14)	-0.0018 (13)	-0.0026 (14)
C8	0.0388 (16)	0.0361 (16)	0.0245 (15)	0.0075 (14)	-0.0023 (12)	0.0051 (14)
C9	0.0264 (13)	0.0268 (14)	0.0286 (15)	-0.0002 (12)	-0.0060 (11)	0.0001 (12)
C10	0.0332 (16)	0.0460 (19)	0.0323 (17)	0.0089 (15)	0.0016 (13)	0.0056 (15)
C11	0.0319 (16)	0.0425 (19)	0.0321 (17)	0.0059 (14)	0.0006 (13)	0.0106 (14)
C12	0.0327 (15)	0.0289 (15)	0.0309 (17)	-0.0018 (13)	-0.0030 (13)	0.0011 (13)

Geometric parameters (Å, °)

Cl1—C2	1.743 (3)	C2—C3	1.377 (4)
Cl2—C5	1.723 (3)	C3—C4	1.541 (4)
01—C1	1.247 (3)	C4—C5	1.447 (4)
O2—C3	1.262 (3)	C5—C6	1.343 (4)
O2—H2	1.20 (14)	C7—C8	1.375 (4)
O3—C4	1.226 (3)	С7—Н7	0.9500
O4—C6	1.329 (3)	C8—C9	1.384 (4)
O4—H4	0.77 (4)	C8—H8	0.9500
N1—C7	1.330 (4)	C9—C10	1.384 (4)
N1-C11	1.343 (4)	C9—C12	1.451 (4)
N1—H1	0.83 (17)	C10—C11	1.376 (4)
N2—C12	1.138 (4)	C10—H10	0.9500
C1—C2	1.416 (4)	C11—H11	0.9500
C1—C6	1.512 (4)		
C3—O2—H2	110 (4)	C4—C5—Cl2	119.1 (2)
С6—О4—Н4	110 (3)	O4—C6—C5	122.0 (3)
C7—N1—C11	122.0 (3)	O4—C6—C1	115.9 (2)
C7—N1—H2	119 (3)	C5—C6—C1	122.1 (2)
C11—N1—H2	119 (3)	N1—C7—C8	120.6 (3)
C7—N1—H1	123 (6)	N1—C7—H7	119.7
C11—N1—H1	115 (6)	С8—С7—Н7	119.7
O1—C1—C2	125.3 (3)	C7—C8—C9	118.5 (3)
O1—C1—C6	117.0 (2)	С7—С8—Н8	120.7
C2-C1-C6	117.7 (2)	С9—С8—Н8	120.7
C3—C2—C1	123.0 (3)	C10—C9—C8	120.2 (3)
C3—C2—Cl1	119.4 (2)	C10—C9—C12	119.4 (3)
C1—C2—Cl1	117.6 (2)	C8—C9—C12	120.4 (3)

O2—C3—C2	125.8 (3)	C11—C10—C9	118.7 (3)
O2—C3—C4	116.2 (2)	C11—C10—H10	120.6
C2—C3—C4	118.0 (2)	C9—C10—H10	120.6
O3—C4—C5	122.9 (3)	N1-C11-C10	120.0 (3)
O3—C4—C3	118.4 (2)	N1-C11-H11	120.0
C5—C4—C3	118.7 (2)	C10-C11-H11	120.0
C6—C5—C4	120.4 (3)	N2—C12—C9	178.2 (3)
C6—C5—Cl2	120.5 (2)		
O1—C1—C2—C3	176.1 (3)	C4—C5—C6—O4	179.3 (3)
C6—C1—C2—C3	-2.4 (4)	Cl2—C5—C6—O4	0.6 (4)
O1—C1—C2—Cl1	-2.0 (4)	C4—C5—C6—C1	-1.5 (5)
C6—C1—C2—Cl1	179.5 (2)	Cl2—C5—C6—C1	179.9 (2)
C1—C2—C3—O2	-175.7 (3)	O1—C1—C6—O4	1.7 (4)
Cl1—C2—C3—O2	2.4 (4)	C2-C1-C6-O4	-179.7 (3)
C1—C2—C3—C4	3.8 (4)	O1—C1—C6—C5	-177.5 (3)
Cl1—C2—C3—C4	-178.1 (2)	C2-C1-C6-C5	1.1 (4)
O2—C3—C4—O3	-5.3 (4)	C11—N1—C7—C8	0.5 (5)
C2—C3—C4—O3	175.1 (3)	N1—C7—C8—C9	0.3 (5)
O2—C3—C4—C5	175.5 (3)	C7—C8—C9—C10	-0.1 (5)
C2—C3—C4—C5	-4.1 (4)	C7—C8—C9—C12	179.5 (3)
O3—C4—C5—C6	-176.2 (3)	C8—C9—C10—C11	-0.8 (5)
C3—C4—C5—C6	3.0 (4)	C12—C9—C10—C11	179.6 (3)
O3—C4—C5—Cl2	2.5 (4)	C7-N1-C11-C10	-1.4 (5)
C3—C4—C5—Cl2	-178.4 (2)	C9-C10-C11-N1	1.5 (5)

Hydrogen-bond geometry (Å, °)

D—H···A	<i>D</i> —Н	$H \cdots A$	$D \cdots A$	D—H··· A
O2—H2…N1	1.20 (10)	1.47 (10)	2.610 (3)	158 (7)
O4—H4…O1	0.78 (4)	2.21 (4)	2.661 (3)	118 (4)
O4—H4···O1 ⁱ	0.78 (4)	1.99 (4)	2.656 (3)	144 (4)
N1—H1…O2	0.83 (12)	1.80 (13)	2.610 (3)	163 (10)
N1—H1…O3	0.83 (12)	2.45 (10)	2.957 (3)	120 (9)
C7—H7····Cl1 ⁱⁱ	0.95	2.82	3.722 (3)	159
C8—H8····O4 ⁱⁱⁱ	0.95	2.46	3.324 (4)	151
C10—H10····Cl2 ^{iv}	0.95	2.81	3.710 (3)	158
C11—H11…O3 ^v	0.95	2.39	3.245 (4)	150

Symmetry codes: (i) -x+1, -y+2, -z+1; (ii) -x+3/2, y-1/2, -z+3/2; (iii) x+1/2, -y+1/2, z+1/2; (iv) -x+2, -y, -z+1; (v) -x+2, -y+1, -z+1.

Fig. 1

Fig. 2

